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Abstract—We propose a gradient-free method of stochastic optimization with perturbation at
the input which is designed to track changes in the minimum point of a function with Hölder
gradient, with observations subject to almost arbitrary (unknown-but-bounded) noise. Similar
methods are widely used in adaptive control problems (energy, logistics, robotics, goal track-
ing), optimization of noisy systems (biomodeling, physical experiments), and online learning
with drift of the data parameters (finance, streaming analytics). The efficiency of the algo-
rithm is tested under conditions that mimic tracking the evolution of human expectations in
reinforcement learning problems based on human feedback when tracking the center of a cluster
of problems in queueing systems. Search methods with input perturbations have been actively
developed in the works by B.T. Polyak since 1990.
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1. INTRODUCTION

The problem of minimizing a function (functional) f(x) is at the heart of solving many practical
problems, from control of engineering systems to machine learning. Closed-form solutions are often
not available due to high dimensionality, nonlinearities, or the lack of an explicit form. Even when
the function is defined explicitly, the practical applicability of the existing approaches is limited
by computational resources, measurement inaccuracies, or rounding errors. Traditional iterative
gradient methods are efficient when finding the minimum of smooth or differentiable functions.
However, in real-world problems, situations often arise where computing the gradient is difficult or
impossible. Typically, the objective function is subject to stochastic disturbances, or its explicit
form is unknown. In practice, the optimized function is often defined by some oracle, and by
making requests (function arguments) to this oracle, it is possible to obtain certain realizations.
The availability of measurements of the gradient itself is feasible with the implementation of special
measuring devices for specific tasks or through finite difference approximations, which are inefficient
in the presence of a high-level noise in the obtained measurements. In such cases, alternative
approaches are required that do not rely on the information about gradients.

A significant contribution to the development of the theory and methods of stochastic opti-
mization was made by B.T. Polyak and his research group. Their research covers a wide range of
issues, including gradient methods [1], pseudo-gradient adaptation and learning algorithms [2–4],
and methods for accelerating convergence [5–7]. Even nowadays, the two papers [8, 9] provide
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700 AKINFIEV et al.

comprehensive answers when analyzing the convergence of general-type iterative stochastic algo-
rithms in terms of mean-square deviations, as well as in the linear case in terms of error covariance
matrices.

A new search method of stochastic approximation proposed in the 1990 paper [10] not only
develops the overall direction of random search algorithms [11], but also significantly advances the
entire general theory of iterative optimization algorithms. This paper shows that, if the observed
values of the optimized function are corrupted by noise, the proposed algorithm has the asymptoti-
cally optimal rate of convergence in the sense that it is impossible to find a faster algorithm among
all possible iterative optimization algorithms for a sufficiently broad class of functions. A similar
algorithm was previously proposed in [12], and consistency of estimates generated by it was justified
in the presence of almost arbitrary noise in the observations. In the English-language literature,
similar methods have been called SPSA (Simultaneous Perturbation Stochastic Approximation),
see [13, 14]. A salient feature of these gradient-free methods is that, regardless of the dimensional-
ity of the problem, the oracle needs to be called only once or twice per iteration, with arguments
being chosen over a randomly generated line through the current point (it is what is referred to
as randomization of the algorithm). A detailed analysis of the history of development of search
algorithms of stochastic approximation with perturbation at the input, as well as the properties of
the estimates generated by these methods are provided in [15–17].

A limitation of classical iterative zero-order stochastic optimization methods (those which do
not use the values of the gradient), such as the Kiefer-Wolfowitz procedure [18] in the multivariate
case, is the need to repeatedly compute the function at each iteration. This becomes especially
impractical in dynamical environments where the target function fn(x) changes over time. A similar
situation arises, for example, in optimization problems related to real-time systems. It turned out
that methods like the previously proposed search algorithms of stochastic optimization with input
perturbation remain to be to be efficient in this situation when replacing the decreasing step-sizes
over time with constant ones, [19, 20]. Later, it was possible to formulate and justify the properties
of a distributed algorithm of this type, combined with a consensus algorithm [20].

In practice, [21, 22], statistical uncertainties are often encountered which do not have second
statistical moment. For example, stable distributions, such as Levi–Pareto, are better at describing
the prices of stocks and commodities than Gaussian distributions. In [24], the properties of the
estimates provided by the SPSA algorithm under such conditions were studied. In the present
paper, these studies are extended to the case of optimization of the non-stationary mean-risk
functional.

2. STATEMENT OF THE PROBLEM

We consider discrete time n = 0, 1, . . . , defined by the label of step (iteration), and we denote
by {Fn(·, ·) : Rd ×R

q → R} the set of functions in two vector variables, which are all differentiable
with respect to the first argument. At every step n, observations

yn = Fn(xn, wn) + vn (1)

are performed at known (chosen) points xn (experimental design), where the wns are uncontrollable
disturbances defined over a probabilistic space Ω and having identical unknown distribution Pw(·),
and vn is the (perhaps non-random) observation noise.

Let Fn−1 denote the σ-algebra of all random events that have been realized up to the time
instant n; E be the symbol of mathematical expectation; EFn−1 denote the conditional mathematical
expectation relative to the σ-algebra Fn−1.

We are interested in the minimization of the following nonstationary mean risk functional:

fn(x) = EFn−1Fn(x,w) =

∫
Rq

Fn(x,w)Pw(dw) → min
x

. (2)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



A SEARCH METHOD FOR STOCHASTIC NON-STATIONARY OPTIMIZATION 701

The goal is to evaluate the minimum point θn of the function fn(x); i.e., to find

θn = argmin
x

fn(x).

Accuracy of the estimate x of the points θn is addressed through use of the scalar Lyapunov
functions

Vn(x) = ‖x− θn‖ρ+1 =
n∑

i=1

|x(i) − θ(i)n |ρ+1,

where θn are the vectors to be found, and ρ ∈ (0, 1] is the Hölder exponent for the gradients of the
functions Vn(x). In the sequel, we write ‖ · ‖ρ+1 to denote the lρ+1-norm and 〈·, ·〉 for the inner
product in R

d.

To characterize the behavior of the estimates of the minimum points of the non-stationary
functional (2), we present two definitions.

Definition 1. The sequence θ̂n of the estimates of the minimum points θn is said to be lρ+1-
stabilized, if there exists C > 0 such that

EVn(θ̂n) ≤ C ∀ n.

Definition 2. The number L is referred to as the asymptotic upper bound for the estimation
errors in the lρ+1-norm, if the sequence of estimates {θ̂n} of the minimum points θn satisfy

lim
n→∞

EVn(θ̂n) ≤ L < ∞.

In what follows, we construct the sequence of stabilizing estimates {θ̂n} in the spirit of Defini-
tion 2 under the following conditions satisfied for all n > 0:

(A) The functions fn(·) are strongly convex in the first argument:

〈∇Vn(x),∇fn(x)〉 ≥ μVn(x).

(B) For all admissible w, the gradients ∇Fn(·, w) satisfy the condition

‖∇Fn(x,w) −∇Fn(y,w)‖1 ≤ M‖x− y‖ρρ
for a certain constant M .

(C) The local Lebesgue property: For every point x ∈ R
d there exists a neighborhood Ux and a

function Φx(w) such that EΦx(w) < ∞ and ‖∇Fn(x
′, w)‖2 ≤ Φx(w) ∀x′ ∈ Ux.

(D) The rate of drift of the minimum point satisfies the following conditions:

a: ‖θn − θn−1‖1 ≤ A;

alternatively, if {θn} is a sequence of random variables, then

EFn−1‖θn − θn−1‖ρ+1
ρ+1 ≤ Aρ+1,

b: EFn−1 ‖∇xFn(x,w) −∇xFn−1(x,w)‖1 � B‖x− θn−1‖ρ1,
c: EFn−1 ‖∇xFn(θn, wn)‖ρ+1

ρ+1 � C,

d: EF2n−2 |F2n(x,w2n)− F2n−1(x,w2n−1)|ρ+1 ≤ DV2n−2(x) + E.

(E) The observation noise vn satisfies the condition

|v2n − v2n−1| ≤ σv,

or
EF2n−2{|v2n − v2n−1|ρ+1} ≤ σρ+1

v

if it has random nature.
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Note that the last condition is valid for arbitrary deterministic bounded sequences {vn}. Condi-
tion (C) allows for interchanging the integration and differentiation operations when justifying the
stabilizability of the estimates. Conditions of the form (D) cover both the random walk drift and
directed drift in a certain direction. For instance, the following condition based on (D) is presented
in [1]:

θn = θn−1 + a+ ξn,

where ξn is a zero-mean random variable, and a is trend. Stabilizability of the estimates generated
by the algorithm under conditions (D) shows its applicability to a wide range of problems.

3. A SEARCH RANDOMIZED ESTIMATION ALGORITHM

Assume that the sequence {Δn} of trial simultaneous perturbations fed to the input of the algo-
rithm is a realization of a sequence of independent Bernoulli vectors in R

d with components being
independent random variables taking values ± 1√

d
with probability 0.5. Let us pick an initial vector

θ0 ∈ R
d. We will estimate the sequence {θn} of the minimum points by the sequence {θ̂n} defined

by the following stochastic optimization algorithm with trial simultaneous input perturbations:

⎧⎪⎪⎨⎪⎪⎩
θ̂2n−1 = θ̂2n−2

x2n = θ̂2n−2 + βΔn, x2n−1 = θ̂2n−2 − βΔn

θ̂2n = θ̂2n−2 − α
2βΔn(y2n − y2n−1),

(3)

where α and β are the step-size parameters. To substantiate the stabilizability property of the
estimates generated by algorithm (3), we adopt yet another assumption:

(F) The random vectors Δn and w2n, w2n−1 are independent of each other as well as of Fn−1. If
{vn} are assumed to have random nature, then Δn do not depend on v2n, v2n−1.

4. STABILIZATION OF ESTIMATES

Denote H = A+ αβM , where A and M are constant bounds on the rate of drift and change of
gradients, respectively.

Theorem 1. Let conditions (A)–(F) be satisfied and let the parameters α, β be chosen in such a
way as to guarantee the constant K > 0 defined later in the proof to be less than unity.

Then, for any initial choice θ̂0 with E‖θ̂0−θ0‖ρ+1 < ∞, the estimates generated by algorithm (3)
are being stabilized in the following sense:

lim
n→∞

E‖θ̂n − θn‖ρ+1 �
(
L

K

) 1
ρ+1

,

where L is also defined at the end of the proof.

Conditions (A)–(C) and (E)–(F) are standard when proving the consistency of estimates gen-
erated by stochastic optimization algorithms with input perturbations; see [18]. Mean-square
stabilizability of the estimates provided by algorithm (3) has been earlier proved in [19] under more
stringent assumptions.

Proof of Theorem 1 and the precise definition of the constants K and L are presented in the
Appendix.
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5. SIMULATION IN THE RLHF-SCENARIO

In reinforcement learning based on feedback from humans (Reinforcement Learning from Human
Feedback, RLHF), a key challenge is working with noisy and unstable data, [26, 27]. Human evalu-
ations often contain random errors and may change over time, hence complicating the optimization
process. In particular, in tasks related to fine tuning of language models (Large Language Mod-
els, LLM), RLHF is used to improve the quality of text generation, align with user preferences,
and minimize undesirable model behavior. However, the subjectivity and variability of human
evaluations create significant difficulties for traditional optimization methods.

5.1. The Model

In the simulations, we examine the efficiency of the search algorithm under conditions close to
reality; i.e., in the presence of heavy-tailed noise (Pareto distribution) and preference drift ([28, 30]),
which mimics the evolution of human expectations. Three scenarios are considered: Moderate drift,
near-stationary preferences, and stationary preferences with asymmetric noise. This allows for the
assessment of stability and adaptability of the algorithm under RLHF conditions and checking its
applicability to tasks related to LLM training and other systems where human feedback plays a
key role.

The goal of simulations is to test the ability of RLHF agents to adapt to a reward model shaped
from noisy and changing human evaluations. We then

— model heavy-tailed noise (Pareto distribution) describing uncertainty and rare but significant
deviations in estimates;

— introduce a preference drift model that simulates the gradual change in human expectations;

— note that all functions and parameters are formulated in conditions (A)–(F) in Section 2.

Each agent has to minimize the discrepancy between its own estimate of the parameter and
the true value set by the reward model, despite noise and dynamics of target preferences; a search
algorithm is used for the minimization.

The RLHF-based reward model is specified as follows:

Fn(x) = −
m∑
i=1

(xi − x∗n)
1.35, (4)

where the target parameter x∗n drifts in time n as

x∗n = x∗n−1 + δ, x∗0 = 5,

thus, reflecting a change in preferences.

Choosing xn from the feedback, we obtain

yn = Fn(x) + vn,

where vn is noise that models uncertainty in the feedback channel. Two types of noise were used
in the simulations:

— symmetric noise vi = Zi · sgni, where Zi ∼ Pareto(β, σ), sgni ∼ Uniform({−1, 1});
— asymmetric noise vi = Zi, where Zi ∼ Pareto(β, σ), which potentially reflects a tendency to

overestimate.
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Table 1 presents the basic parameters of the numerical simulation. They cover the structure of
the experiment, settings of the algorithm (so-called hyper-parameters), as well as the characteristics
of noise and drift scenarios, which model feedback instabilities.

Table 1. Parameters of simulations

Parameter Description Value

Agent’s initial estimate Initial point for learning θ̂0 = 0
Number of iterations Number of adaptation steps N = 1000
Number of runs Amount of independent experiments m = 1000
Hyper-parameters
Adaptation step Conservative step (for stability) γ = 0.05
Level of perturbation Amplitude to estimate the gradient c = 0.1

Characteristics of noise
Shape parameter Defines weights of tails β = 1.6
Scale Intensity of deviations σ = 2.0

Rate of drift Moderate drift δ = 0.01
Near-stationary mode δ = 0.0001

Type of noise Random deviations Symmetric
Systematic bias Asymmetric

5.2. Simulation Scenarios

To analyze the adaptability of the algorithm, we consider three scenarios:
1. Moderate drift of preferences (δ = 0.01) and symmetric noise (referred to as noise with sym-

metric distribution). This scenario mimics gradual changes in target parameters in the pres-
ence of random errors in the estimates.

2. Near-stationary preferences (δ = 0.0001) and symmetric noise. Within this scenario we test
accuracy of tuning under conditions close to stable ones.

3. Stationary preferences (δ = 0.0001) and asymmetric noise (referred to as noise with asym-
metric distribution). This scenario corresponds to a systematic distortion of feedback; i.e.,
a permanent overestimation.

5.3. Agent Adaptation Process

The agent updates its estimate θ̂ of the parameter based on the observed values of y (rewards)
obtained from the model. The algorithm follows the iterative scheme described in (3).

Namely, at every even iteration k = 2n, n = 1, 2, . . . .
1. The estimate θ̂2n−2 obtained at the previous even iteration is used (for n = 1, θ̂0 is used).
2. A random vector Δn of perturbations is generated, with every component independently

taking values +1 or −1 with probability 0.5.
3. Two points are considered according to (3):

x2n = θ̂2n−2 + βΔn, x2n−1 = θ̂2n−2 − βΔn.

4. The values of the reward are then observed at the perturbed points: y2n (associated with x2n)
and y2n−1 (associated with x2n−1). These two quantities include both the true value of the
function and the noise; i.e., yn = Fn(xn, wn) + vn in terms of the notation of this paper.

5. The estimate θ̂ updates similarly to the formula given by the third line of system (3); however,
with sign ”+”, since the maximization is performed:

θ̂2n ← θ̂2n−2 +
α

2β
Δn(y2n − y2n−1).

At every odd iteration k = 2n− 1, the estimate is being copied: θ̂2n−1 ← θ̂2n−2.
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5.4. Checking Conditions (A)–(F) for Simulations in the RLHF-Scenario

(A) Strong convexity of fn(x).

∇fn(x) = −∇Fn(x) = −
[
1.35(x1 − x∗n)

0.35, . . . , 1.35(xm − x∗n)
0.35
]�

,

∇Vn(x) = [(ρ+ 1)sgn(x1 − x∗n)|x1 − x∗n|ρ, . . . , (ρ+ 1)sgn(xm − x∗n)|xm − x∗n|ρ]� ,

〈∇Vn(x),∇fn(x)〉 = −1.35(ρ + 1)
m∑
i=1

|xi − x∗n|ρ+0.35.

Using the inequality |xi − x∗n|ρ+0.35 ≥ |xi − x∗n|ρ+1a−0.65 with a ≤ |xi − x∗n|, we obtain

m∑
i=1

|xi − x∗n|ρ+0.35 ≥ a−0.65
m∑
i=1

|xi − x∗n|ρ+1 = a−0.65Vn(x).

Therefore,

〈∇Vn(x),∇fn(x)〉 ≤ −1.35(ρ + 1)a−0.65Vn(x);

i.e., the condition of the form 〈∇Vn(x),∇fn(x)〉 ≥ μVn(x) holds for μ = −1.35(ρ + 1)a−0.65 < 0.
In the minimization of fn(x), the strong convexity condition in the sense of the scalar inequality
above is satisfied with μ < 0.

(B) The Hölder continuity of the gradient.

The gradient of the reward function Fn(x) writes

∇Fn(x) = −1.35
[
(x1 − x∗n)

0.35, . . . , (xm − x∗n)
0.35
]�

.

Then the components of the difference of the gradients have the form∣∣∣(xi − x∗n)
0.35 − (yi − x∗n)

0.35
∣∣∣ ≤ M ′|xi − yi|0.35,

where M ′ is the Hölder constant, which exist for the function s �→ s0.35 over bounded intervals.

Substitution to the norm gives

‖∇Fn(x)−∇Fn(y)‖22 = 1.352
m∑
i=1

∣∣∣(xi − x∗n)
0.35 − (yi − x∗n)

0.35
∣∣∣2

≤ 1.352M ′2
m∑
i=1

|xi − yi|0.7 ≤ M2‖x− y‖0.72 ,

where M2 = 1.352M ′2m1−0.7/2 is a generalized constant.

Then we have

‖∇Fn(x)−∇Fn(y)‖2 ≤ M‖x− y‖0.352 ,

which corresponds to condition (B) with ρ = 0.35 and M = 1.35M ′m0.325.

(C) The local Lebesgue condition.

Let us fix the point x and consider its neighborhood Ux = B(x, ε) for some ε > 0. Then, for any
x′ ∈ Ux we have

‖∇Fn(x
′, w)‖22 = 1.352

m∑
i=1

|x′i − x∗n|0.7 ≤ 1.352mR0.7,

where R = supx′∈Ux
maxi |x′i − x∗n| < ∞, and it is finite by the construction of Ux.

We then can set Φx(w)=1.35
√
mR0.35, which is independent of w, so that EΦx(w)=Φx(w)<∞.

Condition (C) is satisfied.
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(D.a) Boundedness of the drift of the minimum point.

Since θn = x∗n1 and x∗n = x∗n−1+δ, we have ‖θn−θn−1‖2 = ‖δ1‖2 = δ
√
m. Hence, condition (D.a)

is satisfied for A = δ
√
m.

(D.b) Boundedness of change in the gradient.

Let ri = xi − x∗n−1, then

|∂iFn(x)− ∂iFn−1(x)| ≤ 1.35M ′|δ|0.35,

where M ′ is the Hölder constant of the function s0.35 over the fesible compact.

Summing up over i we obtain

‖∇xFn(x)−∇xFn−1(x)‖1 ≤ 1.35M ′m|δ|0.35.

Denote R = infx 
=θn−1 ‖x− θn−1‖1 > 0; then ‖x− θn−1‖ρ1 ≥ Rρ, and condition (D.b) is satisfied
for

B =
1.35M ′mδ0.35

R0.35
.

(D.c)Boundedness of the gradient at the minimum point.

Since θn = x∗n1, we have ∇xFn(θn) = 0; therefore, ‖∇xFn(θn, wn)‖ρ+1
ρ+1 = 0, so that the condition

holds for C = 0.

(D.d) Boundedness of change in the function at a step.

Fn−1(x,w) = −
m∑
i=1

(xi − x∗n−1)
1.35,

Fn(x,w) − Fn−1(x,w) =
m∑
i=1

[
(xi − x∗n−1)

1.35 − (xi − x∗n)
1.35
]
,∣∣∣(xi − x∗n)

1.35 − (xi − x∗n−1)
1.35
∣∣∣ ≤ M ′|δ|1.35

|Fn(x,w) − Fn−1(x,w)| ≤ mM ′δ1.35.

Since the noise v is subject to the Pareto distribution with parameter β = 1.6 > ρ+ 1 = 1.35,
the moment of order 1.35 does exist, and E|vn − vn−1|ρ+1 ≤ Ẽ < ∞. Therefore, for D = 0 and
E = (mM ′δ1.35 + Ẽ) condition (D.d) is satisfied:

EF2n−2 |F2n(x,w2n)− F2n−1(x,w2n−1)|ρ+1 ≤ DV2n−2(x) + E.

(E) Boundedness of change in the observed noise.

Consider the observation noise vn defined via the Pareto noise:

vn =

{
Znsgnn, symmetric noise,

Zn, asymmetric noise,

where Zn ∼ Pareto(β = 1.6, σ = 2.0), sgnn ∼ Uniform{−1, 1}.
Condition (E) requires the fulfillment of the inequality

EF2n−2 |v2n − v2n−1|ρ+1 ≤ σρ+1
v ,

where ρ+ 1 = 1.5 < β; i.e., the moment of order 1.5 does exist.

Since v2n and v2n−1 are independent, the difference v2n − v2n−1 is also a random variable with
finite moment of order ρ+ 1. For the symmetric case (with alternating signs) numerical simula-
tion over 106 realizations results in E |v2n − v2n−1|1.5 ≈ 53.73, which allows to admit σ1.5

v = 53.73.
Hence, condition (E) is satisfied with explicitly defined constant σρ+1

v = 53.73.
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(F) Independence of perturbations Δn.

By the construction of the search algorithm and the simulations with the RLHF-model, the
vectors Δn are generated to be independent of all exogenous factors. The noise vn is incorporated
afterwards and does not depend on the chosen direction of perturbation.

5.5. Metrics for the Estimates and the Results of Simulations

We use a system of empirical metrics to quantify the behavior of the algorithm under the
conditions of the optimum drift and the presence of noise with heavy tails. These metrics account
for both the accuracy and stability of the estimates and the dynamics of adaptation to changing
conditions. The metrics are selected in such a way as to cover both the steady-state characteristics
of the algorithm and its behavior throughout optimization. This makes it possible to identify the
strengths and weaknesses of the method in various scenarios, from stationary to rapidly changing
and noisy ones.

The assessment of the average accuracy of tracking a drifting parameter on the later stages of
the algorithm is performed through the average absolute error over the last iterations. The stability
of the behavior of the algorithm is determined by the standard deviation of these errors. The range
of fluctuations within a single run is characterized by the average minimum and maximum errors
across runs, which allows for an evaluation of both the achievable potential and worst-case cases.

The dynamical characteristics of the algorithm are reflected in the metrics of the average time to
achieve a given level of accuracy; this provides insight into the rate of adaptation under constraints
on the error. The connection to theoretical definitions of stability is ensured through two moments
of error: The moment of order ρ, which assesses convergence on average, and the corresponding
asymptotic bound that normalizes the error according to the chosen order of the moment. The
order used is selected based on the noise parameters to ensure the existence of the corresponding
mathematical expectations.

Table 2. Basic metrics of the algorithm

Metrics Expression

Mean absolute deviation over last
100 iterations

μlast100 = 1
100m

N−1∑
n=N−100

m∑
i=1

|xn,i − x∗
n|

Standard deviation of errors over last
100 iterations

σlast100 =

√
1

100m−1

N−1∑
n=N−100

m∑
i=1

(|xn,i − x∗
n| − μlast100)

2

Minimum mean deviation over the runs D̄min = 1
m

m∑
i=1

min0≤n<N |xn,i − x∗
n|

Maximum mean deviation over the runs D̄max = 1
m

m∑
i=1

max0≤n<N |xn,i − x∗
n|

Mean convergence time to threshold ε T̄ε =
1
m

m∑
i=1

Ti,ε,

Ti,ε = min{{n | 0 ≤ n < N, |xn,i − x∗
n| < ε} ∪ {N}}

lρ+1-metrics of the estimation error μdef2,last100 = 1
100

N−1∑
n=N−100

1
m

m∑
i=1

(
|xn,i − x∗

n|ρ+1
)1/2

The definitions of the metrics are given in Table 2, a comparison of the results for different
metrics is presented in Table 3, and their dynamics are plotted in Fig. 1.
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Fig. 1. Quality of the estimates. Left: Plot of the lρ+1 estimate of the error as function of the iteration
number n; right: True trajectory of the optimum x∗

n and its estimate xn,i0 .

The results of simulations presented in Table 3 testify to the influence of the environmental
parameters on the performance of the algorithm (based on 1000 experiments, ρ = 0.50; statistics
for the last 100 iterations is presented). With moderate drift (δ = 0.01) and symmetric noise,
the agent does track the goal, but with a noticeable average error (0.3012), moderate stability
(Std = 0.1682), and rare but significant outliers (maximum 19.7897). High-order metrics take
values 0.1788 and 0.4219, with convergence achieved in 20 iterations.

Table 3. Comparison of the results for different types of drift and noise

Metrics
Moderate drift Near-stationary Asymmetric noise

δ = 0.01 (symm) δ = 0.0001 (symm) δ = 0.0001 (asymm)

Stability metrics E[|x− x∗|1.5] 0.1788 0.0524 0.0153
lρ+1-metrics of the estimation error 0.4219 0.1954 0.1206
Mean distance E[|x− x∗|] 0.3012 0.0520 0.0356
Standard deviation of the estimate 0.1682 0.2776 0.0989
Minimum deviation 0.0002 0.0000 0.0000
Maximum deviation 19.7897 57.1922 10.3462
Convergence time (< 1.0) 20 18 18

Decrease of drift down to δ = 0.0001 (near-stationary environment) improves the mean error
(0.0520); at the same time it increases instability. Namely, the standard deviation reaches the
value 0.2776, and the maximum error attains the level of 57.19. This indicates an increase in
sensitivity to noise with heavy tails under weakened drift.

The best results were achieved for asymmetric noise under conditions of weak drift. The error
decreases to 0.0356, the variability is bounded (Std = 0.0989), and the maximum deviations are
significantly lower (10.3462). Stability metrics (0.0153, 0.1206) and convergence time (18 iterations)
also improve.

Hence, decrease of rate of drift increases the accuracy; however, robustness to noise depends on
its type. Thus, asymmetric noise implies a better control over extreme errors, perhaps due to the
specifics of gradient estimate. This effect requires further analysis.

6. SIMULATION OF THE TASK DISTRIBUTION SYSTEM
IN QUEUEING SYSTEM PROBLEMS

Queueing systems, such as modern call centers, are characterized by an incoming flow of tasks
having processing times that are often subject to heavy-tailed distributions [31]. This indicates
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the presence of a statistically significant share of tasks that require disproportionately large pro-
cessing times, distinguishing them from systems described by classical exponential or Gaussian
distributions. The Pareto distribution can be thought of as a suitable model for describing such
phenomena [32], since it accounts for rare but lengthy operations which affect the overall perfor-
mance of the system [33].

To efficiently control such queueing systems, one has to adaptively evaluate the characteristics
of the flow and time of service. Below we analyze an application of our stochastic optimization
search algorithm (3) to the model of dynamical tuning the estimated expected processing time for
different types of tasks; see [34] for a detailed description of the model. We use our method to
iteratively optimize the parameters θ̂k, θ̂m, which are adaptive estimates of time of service for each
task cluster m and for the system as a whole, k.

A simulation model of a call center was presented in [34]. Task service time in the model
is generated from the Pareto distribution, with the parameters being calibrated for each cluster
based on the characteristics of lognormal distributions that approximate historical data. The search
algorithm (3) is used to refine the estimates θ̂k, θ̂m, which in turn are used for the assignment of
incoming tasks to agents. The simulation shows the satisfactory performance of the method in the
stochastic environment and heavy-tail nature of the task processing time.

6.1. The Model

We consider a system of agents having identical resources and performance. The load of agent i,
denoted by qi, corresponds to the number of tasks in its queue. Each task xk is characterized by
type m and the predicted execution time, calculated via the formula

xkm = αθ̂ik + (1− α)θ̂im, α =
χ|λm|
Nm + 1

,

λm(θ̂m) =
1

Nm

∑
k∈Nm

ωk.
θ̂m − tkm

θ̂m
→ min,

where θ̂ik is the individual forecast of agent i for task k, θ̂im is the average predicted time to
complete tasks of type m (taking local history into account), α is the weight factor that determines
the contribution of the individual forecast and aggregated statistics, and χ is the convergence
coefficient. The quantity λm characterizes the accuracy of the model prediction for problems of
type m type and it is corrected when new observations are received. Here, Nm is the amount of
completed tasks of type m, ωk is the weight of the corresponding error, and tkm is the actual time
to complete task k of type m.

Such a mechanism for calculating predictions and accuracy let the model adapt to the current
quality of forecasts reducing the impact of unreliable data and strengthening the contribution of
accumulated statistics with high confidence.

As a new task xk arrives at step k, it is assigned to the following agent ik in order to balance
the load of the agents:

ik = argmin
i

∑
j

∣∣∣∣∣qik + xkm − qjk
dij + 1

∣∣∣∣∣ , (5)

where qj is the load of agent j, dij is the “distance” between agents (for example, based on load
or physical location). The agents are connected in a fully connected topology, where each agent
interacts with all the others. This ensures global communication with varying influence of agents
depending on their relative proximity.
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6.2. Description of the Data Set and the Primary Analysis

To demonstrate the efficiency of the developed method, a modeling of the load distribution
system was conducted based on real data from an operator call center for September 2023 (over
2.3 million calls). For each inquiry, we recorded the instant of arrival, response time (wait time),
the actual duration of call (ACD Time), and customer’s segment.

Figure 2 presents two complementary visualizations that reveal the key characteristics of the
incoming flow of some clusters and the human resources potential of the call center. The plot on the
left shows the hourly intensity of tasks over the ten largest clusters, with the peak load observed for
one of the clusters between 10 AM and noon. The plot on the right shows the distribution of active
operators (those who received more than 50 calls in a two-hour interval), with maximum values
occurring between 8 AM and 4 PM. At the same time, the personnel resources do not always keep
up with the sharp fluctuations in incoming traffic. Simulation delays aggregated by time of day
generally replicate the dynamics of the actual wait times, including a morning rise around 8–9 AM
and an evening peak after 5 PM.

The diagrams presented in Fig. 3 display the distribution of conversation durations for 14 client
segments. For the sake of anonymization, all segments have been renamed to numerical identifiers
from 1 to 14 (see Table 4). The greatest variability and extended tails of the distribution are
observed in segments 11 and 13, whereas segment 2 is characterized by an exclusively short duration
range. Segments 3 and 14 also demonstrate a relatively narrow distribution with short medians.
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Fig. 2. Dynamics of load and the personnel time commitment. Left: Hourly intensity of tasks (top
ten clusters); right: Amount of active agents over two-hour intervals.
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Fig. 3. Duration of calls for the top 14 clusters (max ACD = 1200 sec).
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6.3. Results of Simulations

To assess the performance of the proposed method, a simulation of the call center operations
was conducted using real data. The results allowed for the evaluation of both the dynamics of task
wait times throughout the day and the stability of the load distribution. Figure 4 presents the
results of a specific simulation session.

Fig. 4. The results of the simulation model: Analysis of delays in the service. Left: Mean wait time
(20-minute intervals), right: The distribution of wait time (98th percentile).

The plot on the left presents the mean wait time for tasks over twenty-minute intervals showing
a salient peak during work hours associated with high load. The model efficiently adapts to the
changing environment; namely, after a sharp growth of delays at around noon, the mean wait time
quickly decreases due to the redistribution of tasks.

The histogram on the right represents the 98-percentile distribution of the wait times. Most
of the tasks have been processed in less than 50 sec, which corresponds well to the target SLA-
indicators for typical scenarios.

For key clusters, Table 4 presents the values of the predicted processing time z, the amount k of
completed requests, the mean actual time tavg, and the maximum duration tmax. Clusters 1 to 14
correspond to those presented in Fig. 3, whereas cluster 0 accumulates all other segments outside of
the top-14. The quantities z are seen to fit well the empirical means, despite the different statistics
for different clusters, which confirms robustness properties of the adaptive prediction based on the
developed search algorithm.

Table 4. Results for different key clusters

0 1 2 3 4 5 6 7

z 143.76 163.14 3.73 174.75 147.62 196.05 159.75 151.75

k 368̇58 8180 6166 5764 4461 3857 2523 1707

tavg 124.34 158.94 3.71 163.51 135.06 174.91 161.16 157.93

tmax 200 200 200 200 200 200 200 200

8 9 10 11 12 13 14

z 219.63 151.74 321.53 144.92 147.55 191.31 49.54

k 1329 943 906 484 265 223 44

tavg 233.06 153.30 330.74 158.08 156.68 198.90 87.34

tmax 200 200 200 200 200 200 44
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Fig. 5. Hourly load of agents: Comparison of vacant and occupied resources.

The plot presented in Fig. 5 illustrates the hourly workload of operators during the simulation.
During the night and morning hours (until 8 AM), a significant portion of agents remains free;
however, between 9 AM and 3 PM, there is full utilization of all resources: The number of free
agents drops to zero. This coincides with the peak of incoming task flow and stresses the need
for an accurate prediction of the duration of processing. In the evening and at night, the load
gradually decreases, and the system returns to a balanced state.

Overall, the model demonstrates the ability to correctly adapt to the load, ensuring the mitiga-
tion of wait times and an even distribution of tasks throughout the day. The proposed approach
allows for efficient resource utilization under conditions of high variability in requests and can be
recommended for implementation in distributed support systems with intensive and irregular loads.

7. CONCLUSIONS

In this paper we proposed and thoroughly analyzed a method for estimating the minimum of
a functional which varies in time, under conditions where the measurements are subject to noise.
This method is based on the pseudogradient approach with randomization and it does not rely on
the knowledge of the gradient of the objective function and uses a small number of observations
at every iteration. An assumption was made on the boundedness of rate of change (drift) of the
extremum of the functional. It is proved that the asymptotic estimation error is bounded from above
by L

K , where L and K are found from the properties of the objective function, noise characteristics,
and the parameters of the algorithm. The validity of the theoretical conclusions was confirmed
by the results of numerical simulations which testified to efficient adaptation of RLHF-agents to
noisy and dynamical feedback (in particular, heavy-tailed noise and different preference drift rate).
The experiments showed that the search algorithm ensures the convergence of the estimates to the
target value region.

According to the simulations, the steady-state error and oscillations in the estimates resulting
from noise and drift are consistent with theoretical predictions about the boundedness of the
asymptotic error. Furthermore, the proposed method was tested through simulations based on
real data from an operator call center. Use of empirical characteristics of the flow of requests and
processing times demonstrated reliable applicability of the algorithm in dynamical load distribution
problems and in predicting service parameters in real service systems.
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APPENDIX

Proof of Theorem 1. Denote the estimation error by errn = θ̂n − θn.

Step 1: Recursive relation for the estimation error. By algorithm (3) we have

θ̂2n = θ̂2n−2 −
α

2β
Δ2n(y2n − y2n−1),

hence,

err2n = err2n−2 − (θ2n − θ2n−2)︸ ︷︷ ︸
driftn

− α

2β
Δ2n(y2n − y2n−1)︸ ︷︷ ︸

stepn

.

Step 2: Recursive relation for the estimate of the Lyapunov function V (x). For the vectors a =

θ̂2n−2 and b = driftn + stepn we have

V2n(θ̂2n) = V2n−2(θ̂2n − driftn) = V2n−2(a− b) = ‖a− b− θ2n−2‖ρ+1
ρ+1

by definition. Using the Taylor series expansion of the function V2n−2(a− b) at the point a in the
direction −b, we obtain

V2n−2(a− b) = V2n−2(a)− 〈∇V2n−2(a− δb), b〉, δ ∈ [0, 1], (A.1)

noting that the gradient ∇V2n−2(a− δb) is computed according to

∇V2n−2(a− δb) = (ρ+ 1) · sgn(δ) � |a− θ2n−2 − δb|ρ,

where sgn
(i)
n (δ) = 0 or ±1 depending on the sign of the ith component of the vector a− θ2n−2 − δb;

|a−θ2n−2−δb|ρ is the vector of the absolute values of the components of a−θ2n−2−δb to the power ρ,
and � denotes the componentwise multiplication. The second term in (A.1) can be evaluated as

−〈∇V2n−2(a− δb), b〉 � −〈(ρ+ 1) · sgn(0) � |a− θ2n−2|ρ, b〉+ 21−ρδρ‖b‖ρ+1
ρ+1 �

−〈∇V2n−2(a), b〉 + 21−ρ‖b‖ρ+1
ρ+1

(see proof of Theorem 1 in [24], p. 93).

Keeping the considerations above and using condition (D.a), we have

V2n(θ̂2n) � V2n−2(θ̂2n−2)− 〈∇V2n−2(θ̂2n−2), driftn + stepn〉+ 2(Aρ+1 + ‖stepn‖
ρ+1
ρ+1). (A.2)

Step 3: Expansion of the correcting term. According to the model of observations, represent the
term stepn as the sum

stepn =
α

2β
Δn

(
F2n(x2n, w2n)− F2n−1(x2n−1, w2n−1)

)
︸ ︷︷ ︸

almost pseudogradient term

+
α

2β
Δn(v2n − v2n−1)︸ ︷︷ ︸

noise

.
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a. Almost pseudogradient term. Denote n± = 2n− 1
2 ± 1

2 .

Using the Taylor formula, we first add and subtract the quantity
∑

n±〈∇xFn±(θ̂2n−2, wn±), βΔn〉,
then the quantity 〈∇xF2n−2(θ̂2n−2, wn±), βΔn〉, and finally 〈∇xF2n−2(θ2n−2, wn±), βΔn〉, to obtain∑

n±
±Fn±(xn± , wn±) =

∑
n±

±Fn±(θ̂2n−2, wn±) + 〈∇xFn±(θ̂2n−2 ± δn±βΔn, wn±), βΔn〉

=
∑
n±

±Fn±(θ̂2n−2, wn±) + 〈∇xFn±(θ̂2n−2, wn±), βΔn〉

+ 〈∇xFn±(θ̂2n−2 ± δn±βΔn, wn±), βΔn〉 − 〈∇xFn±(θ̂2n−2, wn±), βΔn〉
=
∑
n±

±Fn±(θ̂2n−2, wn±) + 〈∇xF2n−2(θ2n−2, wn±), βΔn〉

+〈∇xF2n−2(θ̂2n−2, wn±), βΔn〉 − 〈∇xF2n−2(θ2n−2, wn±), βΔn〉
+〈∇xFn±(θ̂2n−2, wn±), βΔn〉 − 〈∇xF2n−2(θ̂2n−2, wn±), βΔn〉

+〈∇xFn±(θ̂2n−2 ± δn±βΔn, wn±), βΔn〉 − 〈∇xFn±(θ̂2n−2, wn±), βΔn〉,

where δn± ∈ [0, 1].

Now take the conditional mathematical expectation with respect to the σ-algebra F2n−2. By
condition (F), the vectors Δn are independent of wn± and the σ-algebra F2n−2, hence we have

α

2β
EF2n−2

⎧⎨⎩Δn

∑
n±

±Fn±(θ̂2n−2, wn±)

⎫⎬⎭ = 0,

since Δn are centered, and

α

2β
EF2n−2

⎧⎨⎩Δn

∑
n±

〈∇xF2n−2(θ2n−2, wn±), βΔn〉

⎫⎬⎭ = 0,

since EF2n−2{∇xF2n−2(θ2n−2, wn±)} = ∇xf2n−2(θ2n−1) by condition (C), and the gradient
of f2n−2(·) at the minimum point θ2n−2 is equal to zero.

As a result, by condition (C) we obtain

EF2n−2

⎧⎨⎩ α

2β
Δn

∑
n±

±Fn±(xn± , wn±)

⎫⎬⎭ =
α

d
∇f2n(θ̂2n−2) +

α

2β
EF2n−2corrn

for the almost pseudogradient term, where

corrn =
∑
n±

〈∇xFn±(θ̂2n−2 ± δn±βΔn, wn±), βΔn〉 − ∇xFn±(θ̂2n−2, wn±), βΔn〉

+〈∇xF2n−2(θ̂2n−2, wn±), βΔn〉 − 〈∇xF2n−2(θ2n−2, wn±), βΔn〉
+〈∇xFn±(θ̂2n−2, wn±), βΔn〉 − 〈∇xF2n−2(θ̂2n−2, wn±), βΔn〉.

By conditiond (B) and (D.b), the following estimate holds:

‖corrn‖ � Mβρ‖Δn‖
(
2‖Δn‖ρ + 2‖θ̂2n−2 − θ2n−2‖ρ) + 3B‖θ̂2n−2 − θ2n−2‖ρ

)
= 2Mβρ + (2 + 3B)‖θ̂2n−2 − θ2n−2‖ρ.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



A SEARCH METHOD FOR STOCHASTIC NON-STATIONARY OPTIMIZATION 715

b. Noise. Take the conditional mathematical expectation with respect to the σ-algebra F2n−2.
By the independence of Δn on v2n, v2n−1 and F2n−2, we obtain

EF2n−2

{
α

2β
Δn(v2n − v2n−1)

}
= 0.

c. The final estimate of the second term on the right-hand side of Ineq (A.2). By the strong
convexity (see condition (A)), we obtain

−EF2n−2{〈∇V2n−2(θ̂2n−2),driftn + stepn〉} � −μα

d
V2n−2(θ̂2n−2)

− α

2β
EF2n−2〈∇V2n−2(θ̂2n−2),driftn + corrn〉 � −μα

d
V2n−2(θ̂2n−2)

+2(A+ αMβρ−1)2 +

(
2 +

α

2β
(2 + 3B)

) d∑
i=1

|θ̂i2n−2 − θi2n−2|2ρ

� −μα

d
V2n−2(θ̂2n−2) + εV2n−2(θ̂2n−2) + c1,

where ε > 0 and

c1 = 2(A+ αMβρ−1)2 + ερ−1
(
2 +

α

2β
(2 + 3B)

) 1−ρ
ρ+1

.

Step 4: Estimate of the third term on the right-hand side of inequality (A.2). Similarly to the
derivations at Step 3 above, the term stepn can be represented as

stepn =
α

2β
Δn

8∑
i=1

ai,

where

• a1 =
∑

n± ±Fn±(θ̂2n−2, wn±);

• a2 = a3 = 〈∇xFn±(θ̂2n−2 ± δn±βΔn, wn±), βΔn〉 − 〈∇xFn±(θ̂2n−2, wn±), βΔn〉;
• a4 = a5 = 〈∇xFn±(θ̂2n−2, wn±), βΔn〉 − 〈∇xFn±(θn± , wn±), βΔn〉;
• a6 = a7 = 〈∇xFn±(θn± , wn±), βΔn〉;
• a8 = v2n − v2n−1.

Respectively, we have

• for a1: EF2n−2 |a1|ρ+1 � DV2n−2(θ̂2n−2) +E by condition (D.d);

• for a2, a3: EF2n−2 |ai|ρ+1 � Mρ+1β2ρ+2, i = 2, 3, by condition (B);

• for a4, a5: EF2n−2 |ai|ρ+1 � (Mβ‖θ̂2n−2 − θn±‖ρ2)ρ+1 � Mρ+1βρ+1d
ρ−1
2 Vn±(θ̂2n−2), i = 4, 5,

by condition (B) and Jensen’s inequality;

• for a6, a7: EF2n−2 |ai|ρ+1 � C, i = 6, 7, by condition (D.c);

• for a8: EF2n−2 |a8|ρ+1 � σρ+1
v by condition (E).

Overall, by Jensen’s inequality we obtain

(∑8
i=1 |ai|
8

)ρ+1

� 1

8

8∑
i=1

|ai|ρ+1,
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so that

2Aρ+1 + 2EF2n−2‖stepn‖
ρ+1
ρ+1 � 2Aρ+1 + 2 · 8ρ

(
α

2β

)ρ+1 7∑
i=1

|ai|ρ+1

� 2Aρ+1 + 22ραρ+1

⎛⎝2Mρ+1(βρ+1 + d
ρ−1
2

∑
n±

Vn±(θ̂2n−2)) +
2C +DV2n−2(θ̂2n−2) + E + σρ+1

v

βρ+1

⎞⎠
� c2α

ρ+1V2n−2(θ̂2n−2) + c3,

where

c2 = 23ρ+1Mρ+1
(
d

ρ−1
2 +

D

βρ+1

)
and

c3 = 2Aρ+1 + 22ραρ+1

(
2Mρ+1(βρ+1 + 3 · 2ρd

ρ−1
2 ) +

E + 2C + σρ+1
v

βρ+1

)
.

Step 5: Shaping the recursive inequality for the Lyapunov function. Collecting all estimates ob-
tained above, we arrive at

V2n � V2n−2 − (μαd−1 − ε− c2α
ρ+1)V2n−2 + c1 + c3.

Introducing the notation

K = 1− μαd−1 + ε+ c2α
ρ+1, L = c1 + c3,

we obtain
V2n � (1−K)V2n−2 + L.

By choosing α and ε sufficiently small, the inequality K < 1 can be achieved, which implies the
assertion of Theorem 1. ��
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